

Studying population change: life tables

• Age-specific summary of survival in a population

Table 53.1 Life Table for Female Belding's Ground Squirrels (Tioga Pass, in the

Age (years)	Number Alive at Start of Year	Proportion Alive at Start of Year*	Death Rate [†]	Average Numbe of Female Offspring per Female
0-1	653	1.000	0.614	0.00
1-2	252	0.386	0.496	1.07
2-3	127	0.197	0.472	1.87
3-4	67	0.106	0.478	2.21
4-5	35	0.054	0.457	2.59
5-6	19	0.029	0.526	2.08
6-7	9	0.014	0.444	1.70
7-8	5	0.008	0.200	1.93
8-9	4	0.006	0.750	1.93
9-10	1	0.002	1.00	1.58

Data from P. W. Sherman and M. L. Morton, Demography of Belding's ground squirrel, Ecology 65 1617–1628 (1984).

*Indicates the proportion of the original cohort of 653 individuals that are still alive at the start of a time interval.

The death rate is the proportion of individuals alive at the start of a time interval that die during that from imposure.

Life history

- Why do some species produce a few young every year, while others produce enormous numbers only once or occasionally?
- Traits affecting reproduction and survival
- Two ways to categorize:
 - Semelparity
 - Iteroparity
- Is either way better?

Fig. 53.13 Agave, or century plant

Population growth (1)

- How do ecologists model growth in numbers of individuals in a population?
- Ignoring immigration, for a population to grow there has to be ????
 - ΔN / Δt = B D
- Where
 - N = population size
 - T = time
 - B = # of births
 - D = # of deaths

Population growth (2)

- It's helpful to convert actual births and deaths to <u>rates</u> so you can determine changes in population number for a population of <u>any</u> size
- Per capita rates of birth and death
 - b = B / # of individuals
 - d = D / # of individuals
- $\Delta N / \Delta t = bN dN$

Focus on little r

- Per capita growth rate of a population
 - r
- $\bullet r = b d$
 - If r > 0 then the population is ?
 - If r < 0 then the population is ?
 - If r = 0 then the population is ?
- dN / dt = rN

Exponential population growth

- Under <u>ideal</u> conditions, a population can grow exponentially for some time
- \bullet dN / dt = rN
- What does exponential growth look like on a graph?

Does exponential growth last forever?

- Eventually too many individuals use up resources, so that resources become <u>limiting</u>
- Hence, environments have a carrying capacity, K, which is...
- K varies over time and space

Population regulation Density-dependent factors help regulate population size Kelp perch (prey) 1.0 0.6 0.0 Kelp perch density (number/plot) Fig. 53.17

Logistic growth and life histories

- Natural selection favors different traits at different densities and in different environments
- K-selected species have life history traits sensitive to population size
 - Density-dependent selection
 - Favors competitive ability and efficiency at using resources
- r-selected species have traits that are <u>density</u> <u>independent</u>
 - Maximum reproductive success in uncrowded environments
 - Poor competitors; favors maximizing r
- Names come from ????

